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CHAPTER 4 -- KINEMATICS

QUESTION SOLUTIONS

4.1)  Without using a formal presentation of formulas, determine the following in
your head:

a.)  The units you get when you multiply velocity and time.
Solution:  This is an example of what is called dimensional analysis.  The idea is that
you can treat units the same way you treat numbers.  So just as you can cancel out
the 3's in the expression (5/3)(3) leaving you with 5 as the solution, you can cancel
out the seconds in the expression (meters/second)(second) leaving the units solution
of meters.  Noting that meters/second are the units for velocity and seconds are the
units for time, the product of the two yields meters . . . or the units of distance
traveled.

b.)  The distance an object travels in 8 seconds when moving with a velocity
magnitude of 6 m/s.

Solution:  (6 meters/second) times (8 seconds) yields (48 meters).

c.)  The units you get when you multiply acceleration and time.
Solution:  Again, a dimensional analysis situation.  Acceleration's units are

(meters/second2), so multiplying that by time yields (meters/second2)(second) =
(meters/second) . . .  or the units of velocity.

d.)  The velocity an object will pick up in 7 seconds when moving under an
acceleration magnitude of 5 m/s2, assuming the velocity and acceleration are in
the same direction.

Solution:  (5 meters/second2) times (7 seconds) yields (35 meters/second).

4.2)  True or False:  An object that negatively accelerates slows down.
Solution:  The direction of an acceleration actually identifies for you the direction of the
change of velocity of an object.  The meaning of this is not intuitively obvious, at least as far as
most people are concerned.  The easiest way to get a handle on it is to notice that acceleration
and net force are directly proportional to one another.  The idea of a negative force isn't
mysterious.  If an object is moving in the negative direction and a force (hence acceleration) in
the negative direction is applied to it, the body will speed up in the negative direction.  By the
same token, if an object is moving in the negative direction and a force (hence acceleration) in
the positive direction is applied to it, the body will slow down.  The rule of thumb is: if the net
force (hence acceleration) is in the same direction as the velocity vector (i.e., they have the
same sign), the body will speed up.  If the net force (hence acceleration) is in the opposite
direction of the velocity vector (i.e., they have different signs), the body will slow down.  In
short, a negative acceleration does NOT necessarily mean slowing down.
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4.3)  Think about a two dimensional projectile situation
(someone throws a baseball in from the outfield).  Once
the ball has become free, and ignoring friction:

a.)  Is there a point in the flight where the acceleration is perpendicular to the
velocity?  Explain.

Solution:  Once thrown, the body freefalls.  Ignoring friction, the only acceleration in
that case is that of gravity, which is downward in the vertical.  The direction of the
velocity of an object is always tangent to its path.  That tangent (i.e., the direction of
the velocity) is perpendicular to the vertical (the direction of the gravitational
acceleration) at the top of its flight.

b.)  Is there a point in the flight where the velocity is zero but the acceleration
is non-zero?  Explain.

Solution:  If students have dealt with one dimensional freefall problems, they might
be tempted to say yes because the y component of velocity is zero at the top of the
flight.  What has to be remembered, at least in this case, is that velocity is a vector--
it can have more than one component.  For this situation, the x component is non-
zero at the top.  In fact, with no friction, the x component is ALWAYS the same value
throughout the flight.

c.)  Is there a point in the flight where a component of the flight's motion has
zero velocity with a non-zero acceleration?  Explain.

Solution:  At the top of the arc the body's y component of velocity is zero while its y
component of acceleration, being gravity, is non-zero.

d.)  Is there a point in the flight where a component of the flight's motion has
non-zero velocity with zero acceleration?  Explain.

Solution:  This is kinda tricky . . . and fun.  Without friction, the x component of the
velocity ALL THROUGHOUT THE MOTION is a constant while the x component of
the acceleration is zero (not surprising--if the acceleration was non-zero, the velocity
would be changing) . . . so there are an infinite number of points that fit the bill.

e.)  Is there more than one point that fits the description outlined in Part d?
Explain.

Solution:  Yup.  See above.

f.)  Is there anywhere in the flight where the ratio of the acceleration in the x
direction to the acceleration in the y direction is zero?  Explain.

Solution:  As you can't have a zero in the denominator, this situation can occur only
when the acceleration in the x direction is zero.  Of course, that is everywhere, so the
answer is yes, everywhere.

4.4)  Rock A is thrown vertically downward from a rooftop
(see sketch).  Rock B is thrown vertically upward.  Rock C
is thrown at an angle relative to the horizontal.   Rock D
drops from rest.  All four are released from the same spot
with those initially moving having the same velocity
magnitude vo.  Assume we can neglect friction.
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a.)  Considering Rock A and Rock B, which of the following quantities is the
same for both rocks:

i.) The time of flight to the ground;
Solution:  B has farther to travel, net, to get to the ground, so its time of flight will
be greater.

ii.) The velocity just before hitting the ground;
Solution:  Velocity is a vector, so we would have to be careful if we were dealing
with a two dimensional situation.  In this case, the motion is one dimensional.  As
there is no friction, gravity will act on B slowing it down, then speeding it up after
it makes the top and finally begins to move back toward the ground.  As it passes
through its initial position, B's velocity will, due to symmetry, be the same as its
initial velocity (i.e., vo).  From that point on, its flight and A's flight will be exactly

the same.  In other words, they will have the same velocity just before hitting the
ground.

iii.) The magnitude of the velocity just before hitting the ground;
Solution:  Again, for a one dimensional situation without friction, the magnitude
of the two velocities should be the same when they get to the ground.

iv.) The acceleration during the flight;
Solution:  The acceleration in both cases is that of gravity, so it will be the same
for both.

v.) The net displacement;
Solution:  Displacement is defined as the net distance between the start point and
the finish point, regardless of the path taken to get to that final point.  Both start
at the same point and end at the same point, so the net displacement will be the
same for both.

vi.) The average speed to the ground;
Solution:  The average speed is defined as the net distance traveled (not the net
displacement) divided by the time it takes to get to the final point.  The net
distance traveled will be greater for B than for A, but the time will be greater,
also.  In other words, this isn't as clear cut a question as one might think.  (The
relationship wasn't obvious to me when I first looked at it, so I did the problem
numerically and found that the average speeds are different.)  To do the problem
from a purely conceptual perspective, the following needs to be noticed:  1.)  The
average speed for the bottom part of B's flight will be the same as the average
speed for all of A's flight because the two flights will be duplicates of one another
(both move downward from the ledge with velocity vo, etc.).  2.)  IF the average

speed for the upper part of B's flight (i.e., going up and coming back down to the
start position) is the same as B's average speed for the bottom of its flight, the two
average speeds will be the same and will equal the average speed for the whole
flight.  3.)  But that isn't what happens. The average speed for the bottom part
will be greater than the initial speed of vo (this just makes sense--the body is

starting at vo and picking up speed throughout that part of the flight--the average

has to be greater than the initial speed vo). By the same token, the average speed

for the upper part will be less than vo (this also makes sense as B's upper motion
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starts at vo, then gets smaller and smaller until it hits the top where it is zero,

then increases back to vo--during that part of the motion, the average speed will

be less than vo).  4.)  As B's average speed for the up/down part is different than

its speed in the lower section, and as the average for the lower section must be the
same for both A  and B , the overall average speed for the two rocks must be
different.

vii.) The average velocity to the ground.
Solution:  The average velocity is the single constant velocity that will move the
body through the appointed displacement in the appointed time. As such, it is
defined as the net displacement divided by time (in this case, we're talking time of
flight).  Remembering that the displacement is the shortest distance between the
beginning and ending points regardless of how you get from the one to the other,
both rocks have the same displacement.  The time of flight for each is different,
though, so the two average velocities will be different.

b.)  Considering Rock B and Rock C, which of the following quantities is the
same for both situations:

i.) The time of flight to the ground;
Solution:  In a two dimensional situation, the x component of motion occurs at a
constant velocity.  The time of flight is determined by the y motion--specifically, by
how high the object goes.  Because C's initial velocity is oriented at an angle with
B's vertically upward, B will be in the air the longest.

ii.) The velocity just before hitting the ground;
Solution:  This is a little tricky because it might be assumed that the magnitude of
the velocities is what is being looked at (in fact, that is the next question).  The
two vectors, being directional creatures, are not the same for the two velocities--
they are going in different directions just before they hit the ground--so at the
very least the direction of their velocities will be different.

iii.) The magnitude of the velocity just before hitting the ground;
Solution:  It is common for people to believe that because C isn't in flight for as
long as B and, as a consequence, wouldn't have had as much time to pick up speed
via gravity, the two final velocities will not be the same.  In fact, it turns out that
that is wrong--the two magnitudes will be the same.  What is being missed is that
B has no x component of velocity, whereas C does.  So although C's vertical speed
isn't as great as B's, its vertical speed coupled vectorially with its horizontal speed
combine to give the two the same net velocity magnitude just before touchdown
(the math bears this out as is shown in the special case outlined at the end of
Problem 4d).  When we get to energy conservation, this will be more easily seen.

iv.) The acceleration during the flight;
Solution:  Acceleration is a vector.  For the two accelerations to be the same, their x
and y components must be the same.  In this case, both experience a vertical
acceleration component due to gravity, and neither has an acceleration component in
the x direction.  In other words, the acceleration vector is the same for both rocks.

v.) The net displacement;
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Solution:  A displacement vector starts at the beginning of the motion and ends at the
conclusion of the motion.  If two objects start at the same spot but don't have a
common finish spot, their displacement can't be the same.

vi.) The average speed to the ground;
Solution:  As before, this is probably the hardest question of the bunch.  And as
before, the average speeds will not be the same (same reasoning as used in the
previous query of the same concept).

vii.) The average velocity to the ground.
Solution:  The temptation is to go through an analysis like the one for the similar
question in Part 4a-vii.  In fact, that isn't necessary.  Remember, the average
velocity is the single constant velocity that will move the body through the
appointed displacement in the appointed time. It is defined as the net
displacement (as a vector) divided by time (the time of flight in this case) .  The
important thing to catch here is that the net displacement in these two cases are
different (one body moves directly downward, the other moves downward and to
the right).  That means the direction of the average velocities will be different,
which means the average velocities as vectors will be different.

c.)  What is common to the flight of Rock A and Rock D?
Solution:  Both rocks have no acceleration in the horizontal and gravitational
acceleration in the vertical, and both will experience the same displacement.

d.)  If rock C's angle had been zero degrees (that is , if it had been thrown
horizontally), what would have been common to the flight of Rock C and Rock D?

Solution:  As with all frictionless freefall situations, both rocks have no acceleration
in the horizontal and gravitational acceleration in the vertical.  Unlike all freefall
situations, both rocks in this case will take the same amount of time to hit the
ground (this is surprising until you think about the force that is accelerating each
rock toward the ground--in both cases, it's gravity . . . as there is no initial vertical
velocity in either case, it'll take the same amount of time for each to cover that same
vertical distance).  Both rocks will have the same velocity magnitude just before
touch down.  This last one isn't really intuitively obvious because the vectors are
different (one is purely vertical while the other has vertical and horizontal
components), but if you VECTORIALLY add the constant horizontal velocity vo of

rock C  to its final vertical velocity (2gd)1/2, you'll get the same final velocity
magnitude as for rock D.

4.5)  An object accelerates from rest at a constant rate a.  In time t, it travels d
units.  If the acceleration is doubled, how much time will it take to travel the
same distance d?

Solution:  Most people would probably analyze this by using the relationship between
the acceleration and displacement of an object whose initial velocity was zero (i.e., d
= .5ata

2).  Using that expression with acceleration a and then with 2a while letting d

stay the same in both cases, the time relationship is found to be t2a = .707ta.  This is

not a straightforward, linear relationship.  The problem is that in a time sense,
acceleration is twice removed from displacement (i.e., it's the second derivative of
displacement).  If we had simply doubled a constant velocity, then it would take half
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the time to travel the distance d.  But that's not what we're doing.  We are doubling
the rate of change of an already changing velocity, so the time relationship isn't so
straightforward.

4.6)  What's a jerk?  (No, it's not the guy sitting next to you.)
Solution:  Just as the change of velocity with time is called acceleration, the change of
acceleration with time is called a jerk.  It's actually a very descriptive term.  When you are
in an accelerating car, you feel a force pushing you back into the seat.  If the acceleration
increases abruptly, you will be jerked back further into the seat (or jerked forward if the
acceleration decreases suddenly).

4.7)  The muzzle velocity of a gun is 100 m/s.  A bullet is
fired horizontally from the gun when it is 2 meters off
the ground.  At the same time, a second bullet held next to the gun is dropped
from rest.  It takes the dropped bullet .64 seconds to hit the ground.  Ignoring
friction and assuming the terrain is flat, how far will the fired bullet travel before
hitting the ground?  (This is almost all conceptual--use your head a lot with only a
little bit of math).

Solution:  The key here is in the fact that the time it takes the second bullet to freefall 2
meters is the same time it takes the traveling bullet to freefall that same distance
(remember, the traveling bullet has no vertical component of initial velocity).  That means
the traveling bullet moving at 100 m/s in the horizontal will continue moving with that
velocity (with no friction, there is no horizontal acceleration to slow it down) for .64
seconds, moving a horizontal distance of (100
meters/second)(.64 second) = 64 meters.

4.8)   A graph of the negative acceleration applied to two
equal masses is shown.  Mass A moves in the +x direction
while mass B moves in the -x direction.

a.)  Are either of the velocity versus time graphs shown
associated with either particle?  Explain.

Solution:  The temptation is to assume that because you have
a body moving in the positive direction, hence having a
positive velocity, that graph 1 should be matched up with
that body (that is what positive velocity means).  A similar
argument could be made for the body with negative velocity.
The problem with this is that we haven't determined whether the acceleration in
each case is motivating the bodies to act as the velocity graph suggests.  That is, is
mass A's velocity decreasing toward zero (i.e., is it slowing down) as is denoted in
graph 1, or is mass B's velocity increasing away from zero (i.e., is it speeding up) as
is denoted in graph 2?  To determine this, the trick is to realize that the acceleration
and the net force acting on an object are directly proportional.  In other words, if the
net force is positive and to the right, the acceleration will be positive and to the right.
With that in mind, the first part of the question could be restated as: A graph of the
negative force applied to two equal masses is shown.  So think about it.  If mass A is
moving in the +x direction (that was given) and a negative acceleration (read that
force) is applied to it, what is the body's velocity going to do?  It is going to slow
down--its velocity is going to approach zero.  That is what  graph 1 depicts, so it must
reflect the motion of mass A.  By the same token, a negative acceleration (read that
force) applied to mass B moving in the negative direction (it's direction of motion was
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given) is going to motivate the body to speed up in the negative direction--its velocity
is going to proceed away from zero.  That is the situation in graph 2.  In short, both
graphs are associated with one or the other mass.

b.)  How would things change if the acceleration had been positive?
Solution:  For the two graphs to work, their slopes would have had to have been positive
rather than negative.

4.9)  A body moves along the x axis as depicted by the graph

a.)  In what direction is the body moving at t = -1 seconds?
Solution:  The slope of the tangent to an object's position versus time graph at a
particular point yields the object's velocity (i.e., its change of position with time) at
that point in time.  At t = -1 second, the slope of the position versus time graph is
zero.  In other words, the body isn't moving in any direction at that time.

b.)  In what direction is it moving at  t = +1 seconds?
Solution:  The direction of an object's velocity vector tells you the direction the object is
moving at a given instant.  The slope of the position versus time graph yields velocity.  At
t = +1 seconds, the slope (velocity) is negative . . . so the body must be moving in the
negative direction.

c.)  Is this a constant velocity situation?  Explain.
Solution:  As the slope of the position versus time graph is changing, the
velocity is changing and it is not a constant velocity situation.

d.)  Is this a constant acceleration situation?  Explain.
Solution:  The slope of the tangent to an object's velocity versus time
graph at a particular point yields the acceleration of the object at
that particular point in time (remember, acceleration is the
measure of an object's change of velocity with time).  For an

x

y

t

x
Point A

acceleration to be constant, therefore, the slope of the velocity versus time graph
must be constant (i.e., the graph must be linear).  In other words, the velocity must
be changing, but it must be doing it at a constant rate.  So what kind of a position
versus time graph yields a slope function (i.e., a velocity function) that changes
constantly?  It's a parabola.  And as our position versus time graph looks like a
parabola, it's likely that this is a constant acceleration situation.

4.10)  The two graphs depict different
characteristics of the motion of a mass.  In what
direction is the mass's velocity when at Point A?
In what direction is the motion's acceleration?

Solution:  This is tricky because it isn't obvious
what is and isn't important.  Also, it turns out
that some might think that we haven't enough information to answer the question (this
isn't really the case, but one might be misled to believe so).  The first thing to note is that
the direction of motion at a given point must be tangent to the trace of the path at that
point.  Looking at Point A as depicted in the first graph, it is obvious that that tangent
will be in the horizontal (i.e., in the x direction).  At Point A, the body is not moving in the
y direction at all!  But is its x motion positive or negative?  That is, is it moving to the
right or the left in the first graph?  The answer to that can be seen in the second graph.
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The slope of the position versus time graph yields the velocity function for the motion.
Notice that that slope is negative, which means the velocity is negative, which means the
direction of motion is in the -x direction.  (Wasn't that fun?)  As for acceleration, if the
path (shown in the first sketch) is bending downward at Point A, the change of velocity (if
in no other way, in at least its direction) is downward which means its acceleration at
Point A is directly downward.

4.11)  Make up a conceptually based graphical question for a friend.  Make it a
real stinker, but give enough information so the solution can be had (no fair giving
an impossible problem).

Solution:  Whatever!

4.12)  There is a classic experiment in which a tape freefalls through a
timer that impresses a mark on the tape every 60th of a second (see
sketch).  As the tape picks up speed, the marks become farther apart
(note that the sketch is not necessarily to scale).  Assume you can ignore
friction.

a.)  What is the ratio between the distance AB and the distance AD?
Solution:  The distance traveled during a freefall from rest is d = .5gt2.  That
means that distance is proportional to time squared. The time between any
two consecutive dots is the same.  For the points we are looking at, the ratio of
times is 1:3 which means the ratio of distances must be 1:9.

b.)  You measure the total distance between the four dots and call it d.  What
is the time duration over this interval?  If you divide d by that time, what kind of
quantity will it give you (think about its units . . .)?

Solution:  The time interval over four dots (three intervals) is 3/60 of a second, or .05
seconds.  Dividing that number into d will give you something whose units are
centimeters/second, or a velocity.  In fact, if you think about it, you are taking the
total distance and dividing it by the total time.  That yields the average velocity over
the three-interval section.

c.)  At what point in the AC interval is the average velocity and instantaneous
velocity the same?

Solution:  Some might think that the average velocity over an interval will be the
same as the instantaneous velocity at the geometric center of the interval (i.e.
measure the distance between A and C and divide it by 2).  This can't be the case,
though, as the velocity is getting bigger and bigger with time (therefore, you'd expect
the average velocity to be larger than the velocity at the geometric center).  It turns
out that the average velocity over any interval is the same as the instantaneous
velocity at the interval's halfway time point.  For the AC interval, this is at Point B.

4.13)  Two buildings stand side by side.  The taller is 20 meters higher than the
shorter.  Rocks are dropped from rest from both roofs at the same time.  When the
rock from the taller building passes the top of the shorter building, the rock from
the shorter building will be (a.) 20 meters below its start point; (b.) less than 20
meters below its start point; (c.) farther than 20 meters below its start point.



Solutions--Ch. 4  (Kinematics)

685

Solution:  The answer is a.  Both objects are falling with the same acceleration (gravity),
and as both are accelerating without friction and with the same initial velocity, the two
ought to stay the same distance apart throughout the motion.

4.14)  A brick is thrown upward with velocity v1.  Two bricks stuck together are
thrown upward with three times that velocity.  If the first brick reaches a
maximum height of H, how high will the two bricks go?

Solution:  What is relevant here is the initial velocity (the fact that the masses are
different is inconsequential as all objects in a frictionless setting will experience THE
SAME gravitational acceleration regardless of their mass).  So assuming everything is
happening in the vertical, how is an object's initial velocity related to its maximum height
when time of flight is not known?  The relationship is generally governed by v2

2 = v1
2+

2ad, where d is the distance traveled between the times t1 and t2.  For a maximum height

situation, d = H and the velocity at the top is zero (that's what it means to be at the top of
the flight--it's where the body pauses to stop moving upward and start moving
downward).  Putting a = -g, d = H, and v2 = 0 into the general expression, we get H =

v1
2/2g.  Conclusion: the maximum height is proportional to the square of the initial

velocity in the y direction.  As such, if the velocity of the second block is three times that
of the first, it should go nine times as high.

4.15)  An idiot drops a coke bottle out of the window of a Cesna aircraft flying in
the horizontal.  Ignoring air friction, what will determine how long it takes for the
bottle to hit the ground?  That is, what parameters (i.e., mass, height, velocity,
what?) would you need to calculate the time of freefall?

 Solution:  Ignoring friction, time of flight is a function of height above the ground, initial
velocity in the y direction, and acceleration in the y direction (i.e., gravity).

4.16)  Two identical guns are fired from the same place at ground level on a
horizontal range.  One is angled at 20o whereas the second is angled at 40o.
Ignoring friction:

a.)  Which bullet would you expect to be in the air the longest?
Solution:  The bullet with the largest initial y component of velocity will be in the air
the longest.  That is the second bullet.

b.)  Which would go the farthest?
Solution:  Distance traveled is a function of initial velocity in the x direction and time of

flight.  We know the 40o bullet is in the air the longest, but that's because its initial y
component of velocity is larger.  Unfortunately, because that's true, its x component of
velocity must be smaller than that of the 20o bullet.  It is possible, therefore, that the 20o

bullet, with its shorter time in the air but larger x component of velocity, might go
farther than the 40o bullet.  The only way to really know which will prevail is to actually
do the problem (the fact that things aren't obvious is OK--remember, we are trying to get
people to THINK . . . if, after thinking, the conclusion drawn is that this is convoluted,
that's fine).  As for the math:  What do we know?  We know that we are assuming a
frictionless set-up.  We know that, due to the symmetry of the frictionless situation, each
bullet will follow a parabolic arc.  It also follows that the magnitude of the y component
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        Note that in a frictionless situation, 
     the x component of the velocity doesn't
 change throughout the motion, and the initial
y component of velocity is equal in magnitude
      and opposite in direction to the final 
              y component of velocity. 

of the initial and final velocities will be
equal  (see the sketch) but will have
opposite directions (i.e., vf,y = -vo , y).

Finally, we know that the acceleration in
the x direction is zero and in the y
direction is g.  As for relationships, vf,y =

vo,y  + ayt will allow us to determine the

time of flight (in that expression, ay = -g

and we could use any number for vo --I

used 100 m/s so that vo,y = 100 sinθ ).

Approximating gravity to be equal to 10
m/s2, the numbers for the 20o time of
flight are t = (vf,y - vo,y)/ay  = ((-vo,y) - vo,y)/ay = ((-vo,y) - vo,y)/ay = 2(-100 sin 20o)/(-10) =

6.84 seconds.  Likewise, the time for the 40o flight is 12.86 seconds (note that though the
angles are doubled, the flight times aren't . . . Why? Because the time of flight isn't a
function of the angle, it's a function of the sine of the angle . . . the sine function isn't
linear).  With ax = 0, the distance traveled is determined using ∆ x = vo,xt = vo (cosθ )t.

For the 20o flight, this comes out to be 640 meters.  For the 40o flight, it's 984 meters.  In
other words, the 40o flight will go the farthest . . . in this case, a lot farther.

c.)  Which would go the highest?
Solution:  You'd pretty much expect that the projectile with the largest initial y
component of velocity will be in the air the longest and, as such, will travel the
highest.  In fact, that's true, so it's the 40o flight.

d.)  Which would be traveling the fastest as it hits the ground?
Solution:  If air friction is neglected, which it is in this problem, the flight should
follow a parabola.  If the initial and final heights are the same, due to the symmetry
of the problem, the velocity magnitudes (the speeds) should be the same at the
beginning and end.  As both projectiles started with the same speed, both should hit
the ground with the same speed.

e.) Which would have experienced the greatest acceleration during the flight?
Solution:  DURING THE FLIGHT, there will be no acceleration in the x direction.
As for the y direction, gravity will accelerate both objects equally.  In short, the two
will experience exactly the same acceleration.

4.17)  Answer all of question 16 assuming air friction exists.

a.)  Which bullet would you expect to be in the air the longest?
Solution:  Even though friction is going to most affect the bullet that would have
been in the air the longest if friction hadn't existed, the presence of friction in this
case shouldn't be great enough to overcome the considerable disparity in the two
flights (as determined in the previous problem).  My guess is that the 40o bullet will
still stay in the air the longest.

b.)  Which would go the farthest?
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Solution:  Again, friction will most affect the flight of the bullet that would have been in

the air the longest, assuming no friction, but the 40o bullet would still be expected to go
the farthest (the difference in actual distances traveled, as determined in Problem 16b, is
large enough to allow us to conclude this).  If we tried to do this problem with numbers,
we would have to add an acceleration due to friction into the equations used in Problem
16b.  This would be very dicey to do as the direction of that acceleration would change
(frictional forces are always opposite the direction of motion and, hence, would have
components that change depending upon the direction of the projectile at a particular
point in time).  Assuming, though, that we could do a good job of approximating an
average acceleration fudge factor for each component of motion, the procedure used to do
the math would be similar to that used in the previous problem.  On the whole, though,
it would be a real pain in the arse to do.

c.)  Which would go the highest?
Solution:  You'd still expect the 40o flight to go the highest.

d.)  Which would be traveling the fastest as it hits the ground?
Solution:  Finally, something different.  With no air friction, due to the symmetry
and the fact that their initial speeds were the same, the projectile that should slow
down the most will be the one that is impinged upon by friction for the longest time.
That, in this case, will be the 40o bullet.

e.) Which would have experienced the greatest maximum acceleration during
the flight?

Solution:  If there was no air friction, the acceleration components would not change
with time and would be the same for both cases.  When air friction exists, though, it
has been observed to be a function of the bullet's velocity (i.e., the faster the bullet is
moving, the more air it runs into).  In the x direction where there is no acceleration
except that due to friction, the greatest acceleration will occur for the bullet with the
greatest x component of velocity.  That will occur for the 20o bullet at the beginning
of its motion (later in its motion, friction will have slowed the bullet down so that the
velocity dependent retarding effect is lessened).  As for the y direction, even though
gravity will accelerate both bullets downward, the maximum acceleration will occur
for the bullet that reaches the greatest velocity upward (in that way, the frictional
force will oppose the upward motion producing a downward acceleration).  This will
happen at the beginning of the motion of the 40o bullet.

4.18)  As a projectile passes through its maximum height, little Mr. Know-It-All
says, "Right now, the dot product of the velocity and the acceleration is zero."
What do you think about that statement (aside from the possibility that little Mr.
Know-It-All needs to get a life)?

Solutions:  At the top of the flight, the velocity vector is tangent to the path (i.e., in the
horizontal) and the acceleration is, assuming a frictionless situation, gravity in the
vertical.  The dot product between two vectors that are perpendicular to one another is,
indeed, zero (the cosine of the angle between the two vectors is zero), so little Mr. Know-it-
all is right . . . assuming there is no friction.  If there is friction, then there will be an
acceleration component in the horizontal and the little twit is wrong.
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PROBLEM  SOLUTIONS

4.19)
a.)  The total distance traversed (versus the net displacement) divided

by the elapsed time.  That scalar is:

        s = dist/time
        = (440 m)/(49 sec)
        = 8.98 m/s.

b.)  The magnitude of the average velocity is the net displacement
divided by the elapsed time.  That is:

       v = (net disp)/time
   = (0 m)/(49 sec)
   = 0 m/s.

Making sense of this:  The woman finished where she started, so her net
displacement is zero.  The average velocity tells us the constant velocity she
would have to travel to effect that displacement in 49 seconds.  That
velocity is zero!

c.)  You know nothing about her instantaneous velocity at any point in
the motion--not even at the beginning (for all you know, she may have had
a running start).

4.20)  The only options we have are:

a.)  The curve could be an acceleration versus time graph.  For a given
time interval, the area under such a curve yields the velocity change over
the interval.  As we have not been told about time intervals or velocity
changes, we don't have enough information to say yea or nay.

b.)  The curve could be a velocity versus time curve.  If that be so, the
velocity magnitude at t = 1 second should be v = -1 m/s.  Unfortunately, the
graph reads +1 at t = 1 second.  The graph is not a velocity versus time
graph.

c.)  The slope of the tangent to a distance versus time graph at any
given point equals the instantaneous velocity at that point in time.  Taking
the curve's slope at t = 1 second we get -1.  The curve must, therefore, be a
position versus time graph.



Solutions--Ch. 4  (Kinematics)

689

4.21)
a.)  During a given time interval, the net displacement of a body is

equal to the area under the velocity versus time curve.  The area under the
curve between t = .5 seconds and t = 3 seconds has two parts: one above the
axis and one below the axis.

Noting that one square on the graph is equal to 1/8 meter, the area
above the axis is eyeballed at approximately (+2.3 squares)(1/8
meter/square), or +.29 meters.  The area below the axis is eyeballed at
approximately (-22 squ)(1/8 meter/squ), or -2.75 meters.

The net distance traveled is approximately (.29 m) + (-2.75 m) = -2.46
meters.  That is, the ant travels 2.46 meters to the left of its starting point.

Note 1:  This number is not the ant's final position-coordinate.  It is only
the net distance the ant traveled from its original position during the time
interval.

Note 2:  Written out fully, ∆ x = -2.46i meters.

b.)  Average velocity is defined as the net displacement per unit time
over a time interval.  In Part a, we determined the ant's net displacement
between the .5 second and 3 second mark as -2.46 meters.  As the time
interval is 2.5 seconds:

vavg = (net disp)/(time interval)
        = (-2.46i meters)/(2.5 seconds)
        = -.98i m/s.

c.)  Taking the information directly off the graph, the ant's velocity:

i.)  At t = .5 seconds is approximately 1.3i m/s.

ii.)  At t = 3 seconds is approximately -2.1i m/s.

d.)  At a given point in time, the acceleration (i.e., the change of
velocity with time) is the slope of the tangent to the velocity curve.
Eyeballing it (watch the graph scaling), the slope of the tangent at:

i.)  t = .5 seconds is approximately (-2)/(.5), or a = -4i m/s2.

ii.)  t = 3 seconds is approximately (1)/(2.25), or a = +.44i m/s2.
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e.)  When the velocity is positive, the ant is moving in the +x direction
(the direction of motion is the direction of the instantaneous velocity).  This
occurs between t = .3 seconds and t = 1 second.

f.)  When the velocity is zero, the ant is standing still.  This occurs at t
= 1 second.

g.)  The acceleration is zero when the slope of the tangent to the curve
is zero (that is, when the velocity is not changing).  This occurs at times t =
2.9 seconds and t = 3.6 seconds.

h.)  When the slope of the velocity graph changes, we have what are
called inflection points.  To determine one, we need to observe two things:

i.)  When the acceleration is not changing, the acceleration is
constant.

ii.)  A constant acceleration generates a velocity function that
changes linearly (i.e., the velocity changes at a constant rate).

The interval over which the velocity seems to be changing linearly is
between t = .3 seconds and t = .5 seconds, at 3.25 seconds, and maybe between t
= 4 seconds and t = 4.3 seconds (though this latter suggestion is debatable).

4.22)  The velocity function is v(t) = (3k1t2i - 4k2tj) m/s.

a.)  The x and y velocity quantities both have to end up with units of
m/s.  If, in the case of the i component, there was no time dependence (i.e.,
no t2 term in the expression), the k1 term would simply have the units m/s.

With the presence of the t2 term, though, that has to be altered to m/s3.
How do you know?  Because if you multiply out the units of k1t2, you get

(m/sec3)(sec)2 = m/s.
By the same token, because the y component is a function of t, the units

of k2 must be m/s2.

b.)  Plugging t = 2 seconds into the velocity function yielding:

   v(t) = (3k1t2i - 4k2tj) .

= [3(1 m/sec3)(2 sec)2i - 4(1 m/sec2)(2 sec)j]
= [12i - 8j] m/s.
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c-i.)  Kinematics can be used only when the acceleration is constant.
That corresponds to a situation in which the velocity is linear in time.  That
is the case in the y direction, but not in the x direction.

c-ii.)  You have been asked to use kinematics in the one direction in
which kinematics is actually justified (clever, eh?).  In that direction, the
velocity at time t = 3 seconds is 4k2t = 4(1 m/sec2)(3 sec) = 12 m/s, and the
velocity at time t = 5 seconds is 20 m/s.  The acceleration is a = (v2 - v1)/t =

[(20 m/s) - (12 m/s)]/(2 sec) = 4 m/s2, and the distance traveled over that
period of time is ∆ x = v1 ∆ t + (1/2)a( ∆ t)2 = (12 m/s)(2 sec) + .5(4 m/s2)(2 sec)2

= 32 meters.

4.23)  We know the bats' initial vertical velocity v1 = 0, their initial height
h1 = 100 meters, their pull-out height h2 = 3 meters, and their acceleration a is

minus the magnitude of the acceleration of gravity, or a = -g = -9.8 m/s2:

a.)  We want v2.  Scanning the kinematic equations (shown below),

(x2 - x1) = v1∆ t + (1/2)a( ∆ t)2   

(x2 - x1) = vavg∆ t     or     vavg = (x2 - x1)/ ∆ t

vavg = (v2 + v1)/2

a = (v2 - v1)/ ∆ t    or    v2 = v1 + a∆ t

(v2)2 = (v1)
2 + 2a(x2 - x1),

we decide to use:

(v2)2 = (v1)
2 + 2a(x2 - x1)

⇒     v2 = [(0)2 +2(-9.8 m/s2)[(3 m) - (100 m)]]1/2

   = 43.6 m/s.

Note:  This equation yields the magnitude of the velocity only (the quantity
v2 is squared in the equation).  If we use this value in subsequent problems, we
must make it negative (the body is moving downward in the -j direction).

 ⇒     v2 = -43.6j m/s.
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b.)  We know that at 3 meters above the ground,  y2 = 3 meters and
v2 = -43.6 m/s (we got the latter from Part a).  We want the pull-out
acceleration ap executed between y2 = 3 meters and y3 = 1 meter.
Scanning the kinematic equations, we find that the same equation used
in Part a will do the job:

(v3)2 = (v2)2 + 2ap(x3 - x2)

     ⇒    (0)2 = (-43.6 m/s)2 +2ap[(1 m) - (3 m)]

       ⇒     ap = 475 m/s2.

Note 1:  We used the same equation in Parts a and b even though the two
situations are related to entirely different sections of motion.  The moral of the
story: these equations work between ANY two points for which you have
information.

Note 2:  That the acceleration is positive should not be surprising.  The net
force and the acceleration are proportional; it will take a positive force (i.e., a force
upward in the +j direction) to stop the bats' freefall.

c.)  We know the velocity at the beginning of the pull-out (v2 = -43.6

m/s), the velocity at the end of the pull-out (v3 = 0), and the acceleration

through the pull-out (ap = 475 m/s2).  To determine the time:

    a = (v3 - v2)/ ∆ t
     ⇒     ∆ t = (v3 - v2)/a

         = [(0) - (-43.6 m/s)]/(475 m/s2)
         = .092 seconds.

   
4.24)  The stunt woman's velocity at Point A is vA = -25 m/s.  The

acceleration is still a = -g.

a.)  After 2 seconds, she has moved a distance:

(yB - yA) = vA∆ t + (1/2)a( ∆ t)2

    = (-25 m/s)(2 sec) + .5(-9.8 m/s2)(2 sec)2

    = -69.6 meters.

b.)  Her velocity at Point B:
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vB = vA + a ∆ t

     = (-25 m/s) + (-9.8 m/s2)(2 sec)
     = -44.6 m/s.

4.25)  Because there are two cars in the system, we have two sets of
kinematic equations available to us (one for the motion of each car).  There are
two common quantities that will link the two sets of equations during the time
interval between the first pass and the second pass.  They are:  1.) both cars will
travel for the same amount of time during the interval; and 2.) their last-pass
coordinate will be the same (we'll call this the "final" coordinate for simplicity).

If we define the origin (i.e., x1 = 0) at the point where the two cars first pass

and define the last pass position as x2:

a.)  For the first car whose initial velocity is 18 m/s and whose
acceleration is zero:

       (x2 - x1) = vfst,1∆ t + (1/2)afst( ∆ t)2

⇒    (x2 - 0) = (18 m/s)t +.5(0)t2

⇒             x2= 18t   (Equation 1).

--For the second car whose initial velocity is 4 m/s and whose acceleration is
6 m/s2:

 (x2 - x1) = vsec,1∆ t + (1/2)asec( ∆ t)2

  ⇒       (x2 - 0) = (4 m/s)t +.5(6m/s2)t2

  ⇒                 x2 = 4t + 3t2 (Equation 2).

Equating the two independent expressions for x2 (i.e., Equations 1 and 2) yields:

 18t = 4t + 3t2.

Dividing by t yields:

18 = 4 + 3t
⇒    t = 4.67 seconds.

b.)  Using Equation 1 yields:

x2= 18t
    = 18(4.67 seconds)
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    = 84.1 meters.

Using Equation 2 yields:

x2 = 4t + 3t2

     = 4(4.67 sec) + 3(4.67 sec)2

     = 84.1 meters.

EITHER EQUATION WILL DO!

c.)  The second car's velocity as it passes the first car:

vsec,2 = vsec,1 + asec ∆ t

         = (4 m/s) + (6 m/s2)(4.67 sec)
         = 32.02 m/s.

An alternative approach would be:

(vsec,2)2 = (vsec,1)
2 + 2afst(xp - xo)

             = (4 m/s)2 + 2(6 m/s2)[(84.1 m) - 0]
             = 32.02 m/s.

EITHER APPROACH WORKS!

d.)  The second car's average velocity:

vavg = (vsec,2 + vsec,1)/2
        = (32.02 m/s + 4 m/s)/2
        = 18.01 m/s.

e.)  Time for the second car to travel to a velocity of 100 m/s:

  asec = (v100 - vsec,1)/∆ t

      ⇒    Dt  = (100 m/s - 4 m/s)/(6 m/s2)
         = 16 seconds.
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4.26)
a.)  All the known information has been inserted into the sketch to the
right.  The coordinate axis has been placed so that y1 = 0 at the bottom of
the window.  We will proceed by writing out kinematic relationships that
will allow us to solve for information we need.

To determine the velocity of the rock when it is at the top of the
window, we will define the "final" position to be at y1 with an "initial"
position at y2.  With that, we can write:

  (y1 - y2) = v2 ∆ t + (1/2)a( ∆ t)2

           (0) - (1.75 m) = v2(.14 s) + (1/2)(-9.8 m/s2)(.14 s)2

         ⇒    v2 = [(-1.75 m) - .5(-9.8m/s2)(.14 s)2]/ (.14 s)
= -11.8

m/s.

Note:  The negative sign makes
sense considering the fact that the rock
is moving downward.

b.)  We want the distance
between the top of the building
and the bottom of the window (this
will numerically equal y3).  An
equation with known values and
y3 is (note that the "final" position
here is y2):

       (v2)2     =     (v3)2    + 2       a            (y2      - y3)

(-11.8 m/s)2 = (-7 m/s)2 + 2(-9.8 m/s2)[(1.75 m) - y3)]
     ⇒      y3 = 6.35 meters.

c.)  A change in the initial velocity of the rock does nothing to the
acceleration of the rock.  Once it becomes free, the rock picks up velocity
due to gravity at a rate of 9.8 m/s every second, no matter what.  Tricky, eh?

4.27)  The car's initial velocity is v1 = 40 m/s; its pedal-to-the-metal

acceleration is ago = +3 m/s2 and its stopping acceleration is astop = -3 m/s2.  The
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light stays yellow for 1.2 seconds before turning.  We need to consider two
situations:  a.) what is the maximum distance the car can be from the restraining
line if it is to successfully accelerate all the way through the intersection in 1.2
seconds; and  b.) what is the minimum distance the car can be from the
restraining line if it is to brake successfully?

a.)  Pedal-to-the-metal:  Taking ∆ xgo to be the distance from the
restraining line to the point at which the car begins its acceleration, the car
must go ∆ xgo + 18 meters to make it through the intersection without
incident (remember, the intersection extends 18 meters beyond the
restraining line).   With 1.2 seconds to accomplish the feat, we can write:

  ( ∆ xgo + 18) = v1 ∆ t + (1/2)ago(∆ t)2

     ⇒    ∆ xgo = (-18 m) + (40 m/s)(1.2 sec) + .5(+3 m/s2)(1.2 sec)2

         = 32.16 meters.

If the car is closer than 32.16 meters, it can accelerate and still make it
across the intersection.  If the car is farther than 32.16 meters, it will not
be able to accelerate completely through the intersection.

b.)  Braking:  The 1.2 seconds is useless in this section.  It doesn't
matter whether the car is sliding while the light is red or not.  All that
matters is that the car stop just behind the restraining line.  Putting the
origin at the restraining line (i.e., xr.l. = 0), and defining xbrake to be the
position at which the brakes must be hit to effect the stop right at the
restraining line, we can write:

       vr.l.
2 = vbrk

2 + 2a(xr.l. - xbrk)
       ⇒    xbrk = - (vr.l.

2 -    vbrk
2    )  / (2      a     )

           = - [ 02    - (40 m/s)2] / [2(-3 m/s2)]
           = - 267 meters.

Note:  The negative sign simply means that a car moving to the right in the
positive direction must begin to stop to the left of the origin (the restraining line).

c.)  Bottom Line:  The car eats it no matter what if it is between 267
meters and 32 meters of the restraining line.
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4.28)
a.)  We need a fixed coordinate axis from which to make our mea-

surements.  We could take ground level as our y = 0 level, but instead we
will take the position in space of the elevator's floor just as the bolt releases
(this will be useful because it is the elevator's floor that will come in contact
with the bolt at the collide position).

The bolt's initial velocity is the same as that of the elevator at the
moment it becomes free.  That velocity is upward, so the bolt will move
above its suddenly-free position to some maximum position ymax before be-
ginning to descend.  WHENEVER YOU ARE LOOKING FOR ymax,
ALWAYS USE:

vtop
2 = v1

2 +
2a(ytop - y1).

As we know the bolt's velocity at the
top of its motion is vtop = 0, we can
write:

vtop
2 = v1,b

2 +
2ab(ytop - y1,b).

  ⇒       (0)2 = (3.4
m/s)2 + 2(-9.8 m/s2)[ytop - (3 m)]

⇒     ytop =
3.59 meters

⇒   ymax above

ground = ytop + 4 = 7.59 meters .
b. and c.)  Finding the time

of flight ∆t and the final
coordinate position yhit requires
two equations solved
simultaneously.  As such, we will do both Parts b and c in this section.

The first thing to notice is that this is really two problems happening at
the same time.  During the bolt's freefall, the elevator is accelerating
upward by its motor while the bolt is accelerated downward by gravity.
Treating the two entities as individuals:

i.)  For the elevator's motion (or, at least, the motion of the
elevator's floor), assuming y = 0 is the floor's position when the bolt
releases:

     yhit = y1,e +    v1,e ∆t   + (1/2)     ae      (∆t)2
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 = (0)  + (3.4 m/s)t +  .5  (1.5 m/s2) t2          (Equ. A).

ii.)  For the bolt's motion, assuming that we are using the same
coordinate axis as above so that the bolt's initial position is y = 3 meters:

     yhit =   y1,b  +      v1,b ∆t + (1/2)     ab      (∆t)2

 = (3 m)  + (3.4 m/s)t +  .5  (-9.8 m/s2) t2 (Equ. B).

iii.)  Equating Equations A and B (yhit is the same in both equations):

   (3.4 m/s)t +  .5(1.5 m/s2) t2 = 3 + (3.4 m/s)t +  .5(-9.8 m/s2)t2

  ⇒     5.65t2 = 3
        ⇒     t = .73 seconds.

iv.)  Using Equation A to determine yhit:

     yhit = y1,e +      v1,e        ∆t   + (1/2)     ae           (∆t)2

 = (0)  + (3.4 m/s)(.73 s) +  .5  (1.5 m/s2) (.73 s)2

 = 2.88 meters.

v.)  The bolt was initially at y = 3 meters.  When it hits the floor, its
coordinate is  yhit = 2.88 meters.   The distance the bolt actually falls is:

        ∆ y =   yfinal    -   yinitial
    = (2.88 m) - (3.0 m)
    = -.12 meters.

vi.)  For the amusement of it, let's check our yhit value by solving
Equation B:

     yhit =   y1,b  +      v1,b        ∆t    + (1/2)     ab           (∆t)2

 = (3 m)  + (3.4 m/s)(.73 s) +  .5  (-9.8 m/s2)(.73 s)2

 = 2.87 meters.

. . . close enough for government work.

d.)  The magnitude of the velocity of the bolt, relative to a fixed frame
of reference (i.e., not relative to the elevator's floor) is determined as
follows:
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vb,bot
2 =      v1,b

2    + 2        ab       [  yb,bot    -   y1,b]

             = (3.4 m/s)2 + 2(-9.8 m/s2)[(2.87 m) - (3 m)]
                  ⇒     vb,bot = 3.76 m/s.

As a vector, this would be vb,bot = -(3.76 m/s)j.

4.29)
a.)  In projectile motion, questions like, "How far ( ∆ x)" and "How long

( ∆ t)" are usually approached simultaneously.  In this case, the time
variable is most easily determined by looking at the motion in the y
direction only.  Noting that the ball started at y1 = 1.3 meters, ended at y2 =

0 (i.e., at ground level), and had a y component velocity of vy = 41 sin 50o,
we can write:

(y2 - y1) = v1,yt + (1/2)ayt2

                (0 m - 1.3 m) = (41 sin 50o)t + .5(-9.8 m/s2)t2

                 -1.3 = 31.4t - 4.9t2

       ⇒     4.9t2 - 31.4t -1.3 = 0.

Using the Quadratic Formula, we get:

t = [-b + [b2 -4ac]1/2]/2a
   = [-(-31.4) + [(-31.4)2 - 4 (4.9)(-1.3)]1/2]/[2(4.9)]
   = [31.4 + (31.8)]/(9.8)
   = 6.45 seconds.

b.)  Assuming x1 = 0 is the x coordinate at which the ball is struck, the
net horizontal distance traveled will be:

(x2 - x1) = v1,xt + (1/2)axt2

(x2 - 0)   = (v1 cos q)t + .5(0 m/s2)t2

     ⇒     x2 = (41 m/s)(cos 50o)(6.45 sec) + 0
        = 170 meters.

c.)  Height is a y related quantity.  Knowing that the y component of
velocity at the top of the arc (i.e., at ymax) will be zero, we can write:

(vmax,y)2 = (v1,y)2 + 2ay(ymax - y1)
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 ⇒   ymax = [(vmax,y)2 - (v1,y)2 + 2ay(y1)]/2ay
      = [(0)2 - (41 sin 50o)2+ 2(-9.8 m/s2)(1.3 m)]/[(2)(-9.8 m/s2)]
      = 51.6 meters.

d.)  At the end of the flight, the ball has an x component of velocity that
has not changed throughout the motion (we are neglecting air friction and
there are no other natural forces out there to make the x motion change).
That value will be:

    
   v2,x = (41 m/s)(cos 50o)

       = 26.4 m/s.

The y motion velocity has changed because gravity has been
accelerating the ball throughout the motion.  We can get the y velocity
using:

(v2,y)2 = (v1,y)2 + 2ay(y2 - y1)

  ⇒     v2,y = [(v1,y)2 + 2ay(y2 - y1)]1/2

        = [[(41 m/s)(sin 50o)]2 + 2(-9.8 m/s2)(0 - 1.3 m)]1/2

        = 31.8 m/s.

Note:  This equation yields magnitudes only.  The y component of the
"final" velocity is in the -j direction.  That means v2,y = -31.8 m/s.

Putting it all together:

v2 = (26.4i - 31.8j) m/s.

4.30)   Whenever you do a problem in which two bodies are moving
independently, you have to find common parameters that will allow you to link
the kinematic equations you write for one body to the kinematic equations you
write for the other body.  In this particular problem, what is common to both the
runner and the punted ball is time and position.  Specifically, the time the ball is
in the air is the same as the time the runner runs, and the ball's "final" x
coordinate is the same as the "final" coordinate of the runner as he catches the
ball.

Having said that, this is one of those problems that is best done by simply
playing with the information you have.  Look to see what is given, then just tinker
with the information and accumulate whatever other information you can.
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Bottom line, though, is that we need to determine where the ball comes
down (i.e., what its x coordinate is when its y coordinate is 1.5 meters), and how
long it takes for the runner to get to that coordinate.

The sketch should help.

goal line
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 starts here
   at x   = 5 m

53

y  = .5 m
1

ball kicked at
   x  = 12 m,1

ball caught at
   x   ,2 y  = 1.5 m

2
3

rx  = v  tr

x  = v    tp p,x

goal line

NOT TO SCALE

To get the time of flight (i.e., how long the ball is in the air before it gets to the y =
1.5 meter mark--this is also the time the runner runs), we use

(y2 - y1) = v1,yt + (1/2)ayt2

                (1.5 m - .5 m) = (20 sin 53o m/s)t + .5(-9.8 m/s2)t2

                       1 = 16t - 4.9t2

       ⇒     4.9t2 - 16t + 1 = 0.

Using the Quadratic Formula, we get:

t = [-b + [b2 -4ac]1/2]/2a
   = [-(-16) + [(-16)2 - 4 (4.9)(1)]1/2]/[2(4.9)]
   = [16 + (15.4)]/(9.8)
   = 3.2 seconds.

Noting that the x component of the ball's initial velocity is negative, relative to our
coordinate axis, and that the acceleration in the x direction is zero, we can
determine the ball's x coordinate when caught using:

(x2 - x1) = v1,xt + (1/2)axt2

(x2 - 88 m) = (-20 cos 53o)t + .5(0)t2

⇒     x2 = 88 + (-20 cos 53om/s)(3.2 sec)
      =  49.5 meters.
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With the coordinate at which the ball is caught, and noting that the catcher will
be running for the same amount of time as the ball is in the air (i.e., 3.2 seconds),
we can determine the catcher's required velocity vc using:

(x2 - x3) = vct + (1/2)act
2

(49.5 - 5 m) = vc(3.2 sec)
⇒     vc = (44.5 m)/(3.2 sec)

      =  13.9 m/s.

Given the fact that this speed suggests a 100 meter dash time that is 2.5 seconds
under the world record, this kid would be something to see!


